Back to Search Start Over

Geochemistry of the Jinduicheng Mo-bearing porphyry and deposit, and its implications for the geodynamic setting in East Qinling, P.R. China

Authors :
Ben Lee
Hujun Gong
Bo Guo
Laimin Zhu
Fei Wang
Guowei Zhang
Source :
Geochemistry. 70:159-174
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

Simultaneous determinations of U–Pb dating and Hf isotopes on single zircon grains by excimer laser-ablation quadrupole and multiple-collector ICP-MS and petrologic and ore geochemical studies have been applied to the ore-bearing porphyry of the Jinduicheng porphyritic molybdenum deposit in East Qinling. Lithogeochemical data show that the porphyry is characteristic of high K2O, K-feldspar porphyritic calc-alkaline granitoids with 176Hf/177Hf=0.282020–0.282436 and eHf(t)=−23.7 to −8.9, which indicates its mixed origin involving a crustal and a mantle component. The weighted average U–Pb age from single zircon grains of the porphyry is 141.5±1.5 Ma. This age coincides with the oldest molybdenite Re-Os model age as dated by others, suggesting that the period of mineralization was almost simultaneous with the porphyry emplacement, or slightly later. The porphyry intrusion and the molybdenum mineralization occurred during the transition from compression to extension in the Jurassic – Cretaceous periods. The corresponding tectonic setting was the intracontinental orogenic and extension stage after collision and orogenesis between the Southern China plate and the Northern China plate. The Jinduicheng porphyry and the deposit's geochemical data indicate that the ore-forming material originated from a mixing of lower crust and upper mantle. When the molybdenum-enriched magma intruded into the upper crust along zones of structural weakness, ore-forming fluid generated by magma crystallization of the porphyry interacted with wall rock or mingled with meteoric water to form the deposit.

Details

ISSN :
00092819
Volume :
70
Database :
OpenAIRE
Journal :
Geochemistry
Accession number :
edsair.doi...........ff3da3b99780f60d9a8f71f03c95a0a2
Full Text :
https://doi.org/10.1016/j.chemer.2009.12.003