Back to Search Start Over

Prediction and Classification for GPCR Sequences Based on Ligand Specific Features

Authors :
Ugur Sezerman
Bekir Ergüner
Ozgün Erdogan
Source :
Computer and Information Sciences – ISCIS 2006 ISBN: 9783540472421, ISCIS
Publication Year :
2006
Publisher :
Springer Berlin Heidelberg, 2006.

Abstract

Functional identification of G-Protein Coupled Receptors (GPCRs) is one of the current focus areas of pharmaceutical research. Although thousands of GPCR sequences are known, many of them are orphan sequences (the activating ligand is unknown). Therefore, classification methods for automated characterization of orphan GPCRs are imperative. In this study, for predicting Level 1 subfamilies of GPCRs, a novel method for obtaining class specific features, based on the existence of activating ligand specific patterns, has been developed and utilized for a majority voting classification. Exploiting the fact that there is a non-promiscuous relationship between the specific binding of GPCRs into their ligands and their functional classification, our method classifies Level 1 subfamilies of GPCRs with a high predictive accuracy between 99% and 87% in a three-fold cross validation test. The method also tells us which motifs are significant for class determination which has important design implications. The presented machine learning approach, bridges the gulf between the excess amount of GPCR sequence data and their poor functional characterization.

Details

ISBN :
978-3-540-47242-1
ISBNs :
9783540472421
Database :
OpenAIRE
Journal :
Computer and Information Sciences – ISCIS 2006 ISBN: 9783540472421, ISCIS
Accession number :
edsair.doi...........fe7a4184de1b9b70fa85e82c6ef34c10