Back to Search
Start Over
Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features
- Source :
- The International Journal of Robotics Research. 31:498-519
- Publication Year :
- 2012
- Publisher :
- SAGE Publications, 2012.
-
Abstract
- We present a 3D model-based visual tracking approach using edge and keypoint features in a particle filtering framework. Recently, particle-filtering-based approaches have been proposed to integrate multiple pose hypotheses and have shown good performance, but most of the work has made an assumption that an initial pose is given. To ameliorate this limitation, we employ keypoint features for initialization of the filter. Given 2D–3D keypoint correspondences, we randomly choose a set of minimum correspondences to calculate a set of possible pose hypotheses. Based on the inlier ratio of correspondences, the set of poses are drawn to initialize particles. After the initialization, edge points are employed to estimate inter-frame motions. While we follow a standard edge-based tracking, we perform a refinement process to improve the edge correspondences between sampled model edge points and image edge points. For better tracking performance, we employ a first-order autoregressive state dynamics, which propagates particles more effectively than Gaussian random walk models. The proposed system re-initializes particles by itself when the tracked object goes out of the field of view or is occluded. The robustness and accuracy of our approach is demonstrated using comparative experiments on synthetic and real image sequences.
- Subjects :
- business.industry
Applied Mathematics
Mechanical Engineering
Euclidean group
Cognitive neuroscience of visual object recognition
Initialization
Pattern recognition
Real image
Autoregressive model
Artificial Intelligence
Robustness (computer science)
Modeling and Simulation
Computer vision
Artificial intelligence
Electrical and Electronic Engineering
Particle filter
business
Pose
Software
Mathematics
Subjects
Details
- ISSN :
- 17413176 and 02783649
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- The International Journal of Robotics Research
- Accession number :
- edsair.doi...........fe62e6d8c977571440b88984bddd83fa
- Full Text :
- https://doi.org/10.1177/0278364912437213