Back to Search Start Over

Mapping Out Human-Centered Data Science

Authors :
Marina Kogan
Aaron Halfaker
Michael Muller
Cecilia Aragon
Stuart Geiger
Shion Guha
Source :
GROUP (Companion)
Publication Year :
2020
Publisher :
ACM, 2020.

Abstract

Social media platforms and social network sites generate a multitude of digital trace behavioral data, the scale of which often necessitates the use of computational data science methods. On the other hand, the socio-behavioral and often relational nature of the social media data requires the attention to context of user activity traditionally associated with qualitative analysis. Human-Centered Data Science (HCDS) attempts to bridge this gap by both harnessing the power of computational techniques and accounting for highly situated and nuanced nature of the social media activity. In this workshop we plan to consider the methods, pitfalls, and approaches of how to do HCDS effectively. Moreover, from collating and organizing these approaches we hope to progress to considering best (or at least common) practices in HCDS.

Details

Database :
OpenAIRE
Journal :
Companion of the 2020 ACM International Conference on Supporting Group Work
Accession number :
edsair.doi...........fe17068e21690a2e54e0fb7709ee54d9