Back to Search Start Over

Persistent cell migration emerges from a coupling between protrusion dynamics and polarized trafficking

Authors :
Vaidžiulytė K
Aude Battistella
Beng W
Anne-Sophie Macé
Mathieu Coppey
Schauer K
Publication Year :
2021
Publisher :
Cold Spring Harbor Laboratory, 2021.

Abstract

Migrating cells present a variety of paths, from non-persistent random walks to highly directional trajectories. While random movement can be easily explained by an intrinsic basal activity of the cell, persistent movement requires the cell to be stably polarized. It remains unclear how this is achieved from the regulation of underlying subcellular processes. In the context of mesenchymal migration, the ability of cells to migrate persistently over several hours require a mechanism stabilizing their protruding activity at their front. Here, we address this mechanism using human RPE1 cell line as our model. We measure, manipulate, and quantitatively perturb cell protrusive activity of the cortex as well as intracellular organization of the endomembrane trafficking system using dynamic micropatterning, pharmacological and trafficking assays, optogenetics and live-cell imaging with tracking. First, we demonstrate that the Nucleus-Golgi axis aligns with the direction of migration and its alignment with the protrusive activity leads to efficient cell movement. Then, using low doses of Nocodazole to disrupt internal cell organization, we show that long-lived polarity breaks down and migration becomes random. Next, we indicate that a flow of vesicles is directed towards the protrusive activity with a delay of 20 min. Eventually, by applying a sustained optogenetic activation, we prove that a localized Cdc42 gradient is able to orient the Nucleus-Golgi axis over a couple of hours. Taken together, our results suggest that the internal polarity axis, provided by the polarized trafficking of vesicles, is stabilizing the protrusive activity of the cell, while the protrusive activity biases this polarity axis. Using a novel minimal physical model, we show that this feedback is sufficient by itself to recapitulate the quantitative properties of cell migration in the timescale of hours. Our work highlights the importance of the coupling between high-level cellular functions in stabilizing the direction of migration over long timescales.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........fd6e335b266724af8b4815be24baa8bd