Back to Search
Start Over
A sharp Liouville principle for $$\Delta _m u+u^p|\nabla u|^q\le 0$$ on geodesically complete noncompact Riemannian manifolds
- Source :
- Mathematische Annalen. 384:1309-1341
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- For $$(m,p,q)\in (1,\infty )\times {\mathbb {R}}\times {\mathbb {R}}$$ , this paper establishes a sharp Liouville principle for the weak solutions to the quasilinear elliptic inequality of second order $$\Delta _m u+u^p|\nabla u|^q\le 0$$ on the geodesically complete noncompact Riemannian manifolds, which is new even for the Euclidean spaces.
Details
- ISSN :
- 14321807 and 00255831
- Volume :
- 384
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen
- Accession number :
- edsair.doi...........fd5fe82844e0cde753299aa0fc7564e6