Back to Search Start Over

A sharp Liouville principle for $$\Delta _m u+u^p|\nabla u|^q\le 0$$ on geodesically complete noncompact Riemannian manifolds

Authors :
Yuhua Sun
Jie Xiao
Fanheng Xu
Source :
Mathematische Annalen. 384:1309-1341
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

For $$(m,p,q)\in (1,\infty )\times {\mathbb {R}}\times {\mathbb {R}}$$ , this paper establishes a sharp Liouville principle for the weak solutions to the quasilinear elliptic inequality of second order $$\Delta _m u+u^p|\nabla u|^q\le 0$$ on the geodesically complete noncompact Riemannian manifolds, which is new even for the Euclidean spaces.

Details

ISSN :
14321807 and 00255831
Volume :
384
Database :
OpenAIRE
Journal :
Mathematische Annalen
Accession number :
edsair.doi...........fd5fe82844e0cde753299aa0fc7564e6