Back to Search
Start Over
Semi-Definite Relaxation-Based ADMM for Cooperative Planning and Control of Connected Autonomous Vehicles
- Source :
- IEEE Transactions on Intelligent Transportation Systems. 23:9240-9251
- Publication Year :
- 2022
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2022.
-
Abstract
- This paper investigates the cooperative planning and control problem for multiple connected autonomous vehicles (CAVs) in different scenarios. In the existing literature, most of the methods suffer from significant problems in computational efficiency. Besides, as the optimization problem is nonlinear and nonconvex, it typically poses great difficultly in determining the optimal solution. To address this issue, this work proposes a novel and completely parallel computation framework by leveraging the alternating direction method of multipliers (ADMM). The nonlinear and nonconvex optimization problem in the autonomous driving problem can be divided into two manageable subproblems; and the resulting subproblems can be solved by using effective optimization methods in a parallel framework. Here, the differential dynamic programming (DDP) algorithm is capable of addressing the nonlinearity of the system dynamics rather effectively; and the nonconvex coupling constraints with small dimensions can be approximated by invoking the notion of semi-definite relaxation (SDR), which can also be solved in a very short time. Due to the parallel computation and efficient relaxation of nonconvex constraints, our proposed approach effectively realizes real-time implementation and thus also extra assurance of driving safety is provided. In addition, two transportation scenarios for multiple CAVs are used to illustrate the effectiveness and efficiency of the proposed method.
- Subjects :
- Nonlinear system
Mathematical optimization
Optimization problem
Coupling (computer programming)
Computer science
Mechanical Engineering
Automotive Engineering
Control (management)
Differential dynamic programming
Relaxation (approximation)
Cooperative planning
Computer Science Applications
System dynamics
Subjects
Details
- ISSN :
- 15580016 and 15249050
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Intelligent Transportation Systems
- Accession number :
- edsair.doi...........fd36776ec8e9b710bc7649e34afffcbd