Back to Search Start Over

Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: Batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study

Authors :
Alexandre Gélabert
Gordon E. Brown
Alfred M. Spormann
Juyoung Ha
Source :
Geochimica et Cosmochimica Acta. 74:1-15
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

The effect of cell wall-associated extracellular polymeric substances (EPS) of the Gram-negative bacterium Shewanella oneidensis strain MR-1 on proton, Zn(II), and Pb(II) adsorption was investigated using a combination of titration/batch uptake studies, surface complexation modeling, attenuated total reflectance – Fourier transform infrared (ATR-FTIR) spectroscopy, and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. Both unmodified (wild-type (WT) strain) and genetically modified cells with inhibited production of EPS (ΔEPS strain) were used. Three major types of functional groups (carboxyl, phosphoryl, and amide groups) were identified in both strains using ATR-FITR spectroscopy. Potentiometric titration data were fit using a constant capacitance model (FITEQL) that included these three functional groups. The fit results indicate less interaction of Zn(II) and Pb(II) with carboxyl and amide groups and a greater interaction with phosphoryl groups in the ΔEPS strain than in the WT strain. Results from Zn(II) and Pb(II) batch adsorption studies and surface complexation modeling, assuming carboxyl and phosphoryl functional groups, also indicate significantly lower Zn(II) and Pb(II) uptake and binding affinities for the ΔEPS strain. Results from Zn K-edge EXAFS spectroscopy show that Zn(II) bonds to phosphoryl and carboxyl ligands in both strains. Based on batch uptake and modeling results and EXAFS spectral analysis, we conclude that the greater amount of EPS in the WT strain enhances Zn(II) and Pb(II) uptake and hinders diffusion of Zn(II) to the cell walls relative to the ΔEPS strain.

Details

ISSN :
00167037
Volume :
74
Database :
OpenAIRE
Journal :
Geochimica et Cosmochimica Acta
Accession number :
edsair.doi...........fd06387fcb14a4706383419ae1fa5988
Full Text :
https://doi.org/10.1016/j.gca.2009.06.031