Back to Search
Start Over
Gradient estimates of a nonlinear elliptic equation for the V-Laplacian
- Source :
- Archiv der Mathematik. 114:457-469
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- This paper studies gradient estimates for positive solutions of the nonlinear elliptic equation $$\begin{aligned} \Delta _V(u^p)+\lambda u=0,\quad p\ge 1, \end{aligned}$$on a Riemannian manifold (M, g) with k-Bakry–Emery Ricci curvature bounded from below. We consider both the case where M is a compact manifold with or without boundary and the case where M is a complete manifold.
- Subjects :
- General Mathematics
010102 general mathematics
Mathematical analysis
Boundary (topology)
Riemannian manifold
01 natural sciences
law.invention
Nonlinear system
Elliptic curve
law
Bounded function
0103 physical sciences
Mathematics::Metric Geometry
Mathematics::Differential Geometry
010307 mathematical physics
0101 mathematics
Manifold (fluid mechanics)
Laplace operator
Ricci curvature
Mathematics
Subjects
Details
- ISSN :
- 14208938 and 0003889X
- Volume :
- 114
- Database :
- OpenAIRE
- Journal :
- Archiv der Mathematik
- Accession number :
- edsair.doi...........fcda6827a211c69ca95bc46ad7fb43a7
- Full Text :
- https://doi.org/10.1007/s00013-019-01419-1