Back to Search
Start Over
Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits
- Source :
- Geochimica et Cosmochimica Acta. 42:547-569
- Publication Year :
- 1978
- Publisher :
- Elsevier BV, 1978.
-
Abstract
- Gibbs free energies, enthalpies and entropies of 42 dissolved uranium species and 30 uranium-bearing solid phases have been critically evaluated from the literature and estimated when necessary for 25°C. Application of the data shows that the uranium in natural waters is usually complexed. At typical concentrations of chloride, fluoride, phosphate and sulfate, uranous (U4+) fluoride complexes are important in anoxic waters below pH 3–4. An intermediate Ehs (between about +0.2 and −0.1 V) and pH values 1–7, UO2+ ion may predominate. In oxidized waters, uranyl (U22+) fluoride complexes and uranyl ion predominate below pH 5; from about pH 4 to 7.5, UO2(HPO4)22− is the principal species; while at higher pHs, UO2CO30 and the di- and tri-carbonate complexes predominate. Uraninite [UO2-UO2.25], α-U3O8 and schoepite are the stable uranium oxides and hydroxides in water at 25°C. Coffinite, USiO4 (c), is probably stable relative to UO2(c) when dissolved silica exceeds about 60 ppm (as SiO2). At low Ehs and pH 4–6, the solubilities of stoichiometric crystalline uraninite and coffinite are below roughly 10−4 ppb. But at intermediate Ehs and neutral to alkaline pHs in the presence of phosphate or carbonate, the formation of uranyl phosphate or carbonate complexes can increase the solubilities of these minerals by several orders of magnitude. The uranyl minerals carnotite, tyuyamunite, autunite, potassium autunite and uranophane are least soluble at pHs in the range 5–8.5 and, in the case of carnotite and tyuyamunite, have solubilities as low as 0.2 and 1 ppb uranium, respectively. The autunites and uranophane are usually several orders of magnitude more soluble than this, consistent with their natural occurrences. Sorption of uranyl on to natural materials is maximal in the same pH range of 5–8.5.
Details
- ISSN :
- 00167037
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Geochimica et Cosmochimica Acta
- Accession number :
- edsair.doi...........fcd406f9eff4b922441eedc0d0a2235e
- Full Text :
- https://doi.org/10.1016/0016-7037(78)90001-7