Back to Search Start Over

Auslander-Reiten triangles in derived categories of finite-dimensional algebras

Authors :
Dieter Happel
Source :
Proceedings of the American Mathematical Society. 112:641-648
Publication Year :
1991
Publisher :
American Mathematical Society (AMS), 1991.

Abstract

Let A A be a finite-dimensional algebra. The category b m o d A bmod A of finitely generated left A A -modules canonically embeds into the derived category D b ( A ) {D^b}\left ( A \right ) of bounded complexes over b m o d A bmod A and the stable category mod _ Z T ( A ) {\underline {\bmod } ^\mathbb {Z}}T\left ( A \right ) of Z \mathbb {Z} -graded modules over the trivial extension algebra of A A by the minimal injective cogenerator. This embedding can be extended to a full and faithful functor from D b ( A ) {D^b}\left ( A \right ) to mod _ Z T ( A ) \underline {\bmod }^{\mathbb {Z}}T\left ( A \right ) . Using the concept of Auslander-Reiten triangles it is shown that both categories are equivalent only if A A has finite global dimension.

Details

ISSN :
10886826 and 00029939
Volume :
112
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi...........fc6b385ffb8b2eb7d91cb95ea0a05490
Full Text :
https://doi.org/10.1090/s0002-9939-1991-1045137-6