Back to Search
Start Over
An elementary derivation of the asymptotics of partition functions
- Source :
- The Ramanujan Journal. 11:49-66
- Publication Year :
- 2006
- Publisher :
- Springer Science and Business Media LLC, 2006.
-
Abstract
- Let Sa,b = {an+b:n ≥ 0 } where n is an integer. Let Pa,b(n) denote the number of partitions of n into elements of Sa,b. In particular, we have the generating function, $$ \sum_{n=0}^{\infty} P_{a,b}(n)q^{n}=\prod_{n=0}^{\infty} \frac{1}{(1-q^{an+b})}. $$ We obtain asymptotic results for Pa,b(n) when gcd(a,b) = 1. Our methods depend on the combinatorial properties of generating functions, asymptotic approximations such as Stirling's formula, and an in depth analysis of the number of lattice points inside certain simplicies.
Details
- ISSN :
- 15729303 and 13824090
- Volume :
- 11
- Database :
- OpenAIRE
- Journal :
- The Ramanujan Journal
- Accession number :
- edsair.doi...........fc54e1f54c16a2bb15a443a256605211
- Full Text :
- https://doi.org/10.1007/s11139-006-5307-x