Back to Search Start Over

An elementary derivation of the asymptotics of partition functions

Authors :
Daniel M. Kane
Source :
The Ramanujan Journal. 11:49-66
Publication Year :
2006
Publisher :
Springer Science and Business Media LLC, 2006.

Abstract

Let Sa,b = {an+b:n ≥ 0 } where n is an integer. Let Pa,b(n) denote the number of partitions of n into elements of Sa,b. In particular, we have the generating function, $$ \sum_{n=0}^{\infty} P_{a,b}(n)q^{n}=\prod_{n=0}^{\infty} \frac{1}{(1-q^{an+b})}. $$ We obtain asymptotic results for Pa,b(n) when gcd(a,b) = 1. Our methods depend on the combinatorial properties of generating functions, asymptotic approximations such as Stirling's formula, and an in depth analysis of the number of lattice points inside certain simplicies.

Details

ISSN :
15729303 and 13824090
Volume :
11
Database :
OpenAIRE
Journal :
The Ramanujan Journal
Accession number :
edsair.doi...........fc54e1f54c16a2bb15a443a256605211
Full Text :
https://doi.org/10.1007/s11139-006-5307-x