Back to Search Start Over

High-throughput investigations of configurational-transformation-dominated serrations in CuZr/Cu nanolaminates

Authors :
Laszlo J. Kecskes
Bin Tang
Jinshan Li
William Yi Wang
Hongchao Kou
Shun Li Shang
Bin Gan
Deye Lin
Yiguang Wang
Xidong Hui
Zhenhai Xia
Peter K. Liaw
Karin A. Dahmen
Yi Wang
Zi Kui Liu
Jun Wang
Xingyu Gao
Haifeng Song
Source :
Journal of Materials Science & Technology. 53:192-199
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Metallic amorphous/crystalline (A/C) nanolaminates exhibit excellent ductility while retaining their high strength. However, the underlying physical mechanisms and the resultant structural changes during plastic deformation still remain unclear. In the present work, the structure-property relationship of CuZr/Cu A/C nanolaminates is established through integrated high-throughput micro-compression tests and molecular dynamics simulations together with high-resolution transmission electron microcopy. The serrated flow of nanolaminates results from the formation of hexagonal-close-packed (HCP)-type stacking faults and twins inside the face-centered-cubic (FCC) Cu nano-grains, the body-centered-cubic (BCC)-type ordering at their grain boundaries, and the crystallization of the amorphous CuZr layers. The serration behavior of CuZr/Cu A/C nanolaminates is determined by several factors, including the formation of dense dislocation networks from the multiplication of initial dislocations that formed after yielding, weak-spots-related configurational-transitions and shear-transition-zone activities, and deformation-induced devitrification. The present work provides an insight into the heterogeneous deformation mechanism of A/C nanolaminates at the atomic scale, and mechanistic base for the microstructural design of self-toughening metallic-glass (MG)-based composites and A/C nanolaminates.

Details

ISSN :
10050302
Volume :
53
Database :
OpenAIRE
Journal :
Journal of Materials Science & Technology
Accession number :
edsair.doi...........fc06ee4cb5e3274f0844e640509bf971