Back to Search
Start Over
TRANSP simulations of ITER plasmas
- Publication Year :
- 1995
- Publisher :
- Office of Scientific and Technical Information (OSTI), 1995.
-
Abstract
- The TRANSP code is used to construct comprehensive, self-consistent models for ITER discharges. Plasma parameters are studied for two discharges from the ITER ``Interim Design`` database producing 1.5 GW fusion power with a plasma current of 21 MA and 20 toroidal field coils generating 5.7 T Steady state profiles for T{sub ion}, T{sub e}, n{sub e}, Z{sub eff}, and P{sub rad} from the database are specified. TRANSP models the full up/down asymmetric plasma boundary within the separatrix. Effects of high-energy neutral beam injection, sawteeth mixing, toroidal field ripple, and helium ash transport are included. Results are given for the fusion rate profiles, and parameters describing effects such as alpha particle slowing down, the heating of electrons and thermal ions, and the thermalization rates. The deposition of 1 MeV neutral beam ions is predicted to peak near the plasma center, and the average beam ion energy is predicted to be half the injected energy. Sawtooth mixing is predicted to broaden the fast alpha profile. The toroidal ripple losses rate of alpha energy is estimated to be 3% before sawtooth crashes and to increase by a factor of three to four immediately following sawtooth crashes. Assumptions for the thermal He transport and the He recycling coefficient at the boundary are discussed. If the ratio of helium and energy confinement times, {tau}*{sub He}/{tau}{sub E} is less than 15, the steady state fusion power is predicted to 1.5 GW or greater. The values of the transport coefficients required for this fusion power depend on the He recycling coefficient at the separatrix. If R{sub rec} is near 1, the required He diffusivity must be much larger than that measured in tokamaks. If R{sub rec} {le} 0.50, and if the inward pinch is small, values comparable to those measured are compatible with 1.5 GW.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........fb3a2499bf2aa5a48dc146cda6e7cf0e
- Full Text :
- https://doi.org/10.2172/206594