Back to Search
Start Over
Tailoring Solution-Processable Li Argyrodites Li6+xP1–xMxS5I (M = Ge, Sn) and Their Microstructural Evolution Revealed by Cryo-TEM for All-Solid-State Batteries
- Source :
- Nano Letters. 20:4337-4345
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- Owing to their high Li+ conductivities, mechanical sinterability, and solution processability, sulfide Li argyrodites have attracted much attention as enablers in the development of high-performance all-solid-state batteries with practicability. However, solution-processable Li argyrodites have been developed only for a composition of Li6PS5X (X = Cl, Br, I) with insufficiently high Li+ conductivities (∼10-4 S cm-1). Herein, we report the highest Li+ conductivity of 0.54 mS cm-1 at 30 °C (Li6.5P0.5Ge0.5S5I) for solution-processable iodine-based Li argyrodites. A comparative investigation of three iodine-based argyrodites of unsubstituted and Ge- and Sn-substituted solution-processed Li6PS5I with varied heat-treatment temperature elucidates the effect of microstructural evolution on Li+ conductivity. Notably, local nanostructures consisting of argyrodite nanocrystallites in solution-processed Li6.5P0.5Ge0.5S5I have been directly captured by cryogenic transmission electron microscopy, which is a first for sulfide solid electrolyte materials. Specifically, the promising electrochemical performances of all-solid-state batteries at 30 °C employing LiCoO2 electrodes tailored by the infiltration of Li6.5P0.5Ge0.5S5I-ethanol solutions are successfully demonstrated.
- Subjects :
- chemistry.chemical_classification
Materials science
Sulfide
Mechanical Engineering
Argyrodite
Bioengineering
02 engineering and technology
General Chemistry
Electrolyte
engineering.material
Conductivity
021001 nanoscience & nanotechnology
Condensed Matter Physics
Electrochemistry
Chemical engineering
chemistry
Transmission electron microscopy
Fast ion conductor
engineering
General Materials Science
0210 nano-technology
Solution process
Subjects
Details
- ISSN :
- 15306992 and 15306984
- Volume :
- 20
- Database :
- OpenAIRE
- Journal :
- Nano Letters
- Accession number :
- edsair.doi...........faf2ea7b57e53877ea9054dac11ec1e5