Back to Search
Start Over
Some unstable critical metrics for the $L^{\frac{n}{2}}$-norm of the curvature tensor
- Source :
- Mathematical Research Letters. 21:235-240
- Publication Year :
- 2014
- Publisher :
- International Press of Boston, 2014.
-
Abstract
- We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by R-n/2(g) := integral(M) vertical bar R(g)vertical bar(n//2) dv(g) where R(g), dv(g) denote the Riemannian curvature and volume form corresponding to g. We show that there are locally symmetric spaces which are unstable critical points for this functional.
- Subjects :
- Riemann curvature tensor
Pure mathematics
General Mathematics
Prescribed scalar curvature problem
Mathematical analysis
Curvature
Volume form
symbols.namesake
symbols
Mathematics::Differential Geometry
Sectional curvature
Exponential map (Riemannian geometry)
Ricci curvature
Mathematics
Scalar curvature
Subjects
Details
- ISSN :
- 1945001X and 10732780
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Mathematical Research Letters
- Accession number :
- edsair.doi...........fa5bb38688846b9f20c97b1a12e24336
- Full Text :
- https://doi.org/10.4310/mrl.2014.v21.n2.a2