Back to Search Start Over

Thermofluid Dynamic Analysis of a Gas Turbine Transition-Piece

Authors :
Giovanni Riccio
Lorenzo Mazzei
Antonio Andreini
Cosimo Bianchini
Alessandro Ciani
Alessandro Marini
Riccardo Da Soghe
Source :
Journal of Engineering for Gas Turbines and Power. 137
Publication Year :
2015
Publisher :
ASME International, 2015.

Abstract

The transition-piece of a gas turbine engine is subjected to high thermal loads as it collects high temperature combustion products from the gas generator to a turbine. This generally produces high thermal stress levels in the casing of the transition piece, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the transition-piece life span and to assure safe operations. The present study aims to investigate the aerothermal behavior of a gas turbine engine transition-piece and in particular to evaluate working temperatures of the casing in relation to the flow and heat transfer situation inside and outside the transition-piece. Typical operating conditions are considered to determine the amount of heat transfer from the gas to the casing by means of computational fluid dynamics (CFD). Both conjugate approach and wall fixed temperature have been considered to compute the heat transfer coefficient (HTC), and more in general, the transition-piece thermal loads. Finally a discussion on the most convenient HTC expression is provided.

Details

ISSN :
15288919 and 07424795
Volume :
137
Database :
OpenAIRE
Journal :
Journal of Engineering for Gas Turbines and Power
Accession number :
edsair.doi...........f95ecf0629e59847916ad522a6629c51