Back to Search Start Over

A Dynamic Graph-Based Scheduling and Interference Coordination Approach in Heterogeneous Cellular Networks

Authors :
Shan Wang
Xiping Hu
Jibo Wei
Haitao Zhao
Victor C. M. Leung
Li Zhou
Edith C.-H. Ngai
Source :
IEEE Transactions on Vehicular Technology. 65:3735-3748
Publication Year :
2016
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2016.

Abstract

To meet the demand of increasing mobile data traffic and provide better user experience, heterogeneous cellular networks (HCNs) have become a promising solution to improve both the system capacity and coverage. However, due to dense self-deployment of small cells in a limited area, serious interference from nearby base stations may occur, which results in severe performance degradation. To mitigate downlink interference and utilize spectrum resources more efficiently, we present a novel graph-based resource allocation and interference management approach in this paper. First, we divide small cells into cell clusters, considering their neighborhood relationships in the scenario. Then, we develop another graph clustering scheme to group user equipment (UE) in each cell cluster into UE clusters with minimum intracluster interference. Finally, we utilize a proportional fairness scheduling scheme to assign subchannels to each UE cluster and allocate power using water-filling method. To show the efficacy and effectiveness of our proposed approach, we propose a dual-based approach to search for optimal solutions as the baseline for comparisons. Furthermore, we compare the graph-based approach with the state of the art and a distributed approach without interference coordination. The simulation results show that our graph-based approach reaches more than 90% of the optimal performance and achieves a significant improvement in spectral efficiency compared with the state of the art and the distributed approach both under cochannel and orthogonal deployments. Moreover, the proposed graph-based approach has low computation complexity, making it feasible for real-time implementation.

Details

ISSN :
19399359 and 00189545
Volume :
65
Database :
OpenAIRE
Journal :
IEEE Transactions on Vehicular Technology
Accession number :
edsair.doi...........f783110c6b6489727e8cce40e00d1d1b
Full Text :
https://doi.org/10.1109/tvt.2015.2435746