Back to Search
Start Over
A Dynamic Graph-Based Scheduling and Interference Coordination Approach in Heterogeneous Cellular Networks
- Source :
- IEEE Transactions on Vehicular Technology. 65:3735-3748
- Publication Year :
- 2016
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2016.
-
Abstract
- To meet the demand of increasing mobile data traffic and provide better user experience, heterogeneous cellular networks (HCNs) have become a promising solution to improve both the system capacity and coverage. However, due to dense self-deployment of small cells in a limited area, serious interference from nearby base stations may occur, which results in severe performance degradation. To mitigate downlink interference and utilize spectrum resources more efficiently, we present a novel graph-based resource allocation and interference management approach in this paper. First, we divide small cells into cell clusters, considering their neighborhood relationships in the scenario. Then, we develop another graph clustering scheme to group user equipment (UE) in each cell cluster into UE clusters with minimum intracluster interference. Finally, we utilize a proportional fairness scheduling scheme to assign subchannels to each UE cluster and allocate power using water-filling method. To show the efficacy and effectiveness of our proposed approach, we propose a dual-based approach to search for optimal solutions as the baseline for comparisons. Furthermore, we compare the graph-based approach with the state of the art and a distributed approach without interference coordination. The simulation results show that our graph-based approach reaches more than 90% of the optimal performance and achieves a significant improvement in spectral efficiency compared with the state of the art and the distributed approach both under cochannel and orthogonal deployments. Moreover, the proposed graph-based approach has low computation complexity, making it feasible for real-time implementation.
- Subjects :
- Computer Networks and Communications
Computer science
business.industry
Orthogonal frequency-division multiplexing
Aerospace Engineering
020302 automobile design & engineering
020206 networking & telecommunications
02 engineering and technology
Spectral efficiency
Scheduling (computing)
Base station
0203 mechanical engineering
Automotive Engineering
Telecommunications link
0202 electrical engineering, electronic engineering, information engineering
Cellular network
Graph (abstract data type)
Resource allocation
Resource management
Electrical and Electronic Engineering
business
Clustering coefficient
Computer network
Subjects
Details
- ISSN :
- 19399359 and 00189545
- Volume :
- 65
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Vehicular Technology
- Accession number :
- edsair.doi...........f783110c6b6489727e8cce40e00d1d1b
- Full Text :
- https://doi.org/10.1109/tvt.2015.2435746