Back to Search Start Over

Plasma equilibrium based on RF-driven current profile without assuming nested magnetic surfaces on QUEST

Authors :
Yoshihiko Nagashima
Takahiro Nagata
Md. Mahbub Alam
A. Higashijima
Akihide Fujisawa
Y. Kawamata
M. Sueoka
Osamu Mitarai
Hiroshi Idei
Yanzheng Jiang
K. Araki
Kazuaki Hanada
Hideki Zushi
H. Nakashima
Makoto Hasegawa
Atsushi Fukuyama
S. Kawasaki
Manabu Takechi
Katsumasa Nakamura
K. Kurihara
Kazutoshi Tokunaga
Source :
Fusion Engineering and Design. 123:532-534
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

In the present RF-driven (ECCD) steady-state plasma on QUEST, the plasma current seems to flow in the open magnetic surface outside of the closed magnetic surface in the low-field region according to the plasma current fitting (PCF) method. The current in the open magnetic surface is due to the orbit-driven current by high-energy particles in the RF-driven plasma. High-energy particles guiding center orbits are calculated as contour plots of conserved variables in the Hamiltonian formulation considering particles in the initial position with different energies and pitch angles satisfying the resonance condition. A negative current appears near the magnetic axis, and a hollow current profile is expected even if the pressure driven current is considered. The equilibrium is fitted within nested magnetic surfaces by J-EFIT coded by MATLAB using the hollow current profile shift toward the low-field region. Although the plasma boundary shape reflects the plasma current density profile, the equilibrium shape fitted by J-EFIT does not coincide with the orbit-driven current profile. However, introducing an extension of the current profile without assuming nested contours into the J-EFIT code appropriately fits the plasma shape with the hollow current profile to the measured magnetic data.

Details

ISSN :
09203796
Volume :
123
Database :
OpenAIRE
Journal :
Fusion Engineering and Design
Accession number :
edsair.doi...........f7750a02e74e23aab8d92aa81cc503a7