Back to Search
Start Over
Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor
- Source :
- Plasma Science and Technology. 24:095602
- Publication Year :
- 2022
- Publisher :
- IOP Publishing, 2022.
-
Abstract
- As an important component of tokamaks, the divertor is mainly responsible for extracting heat and helium ash, and the targets of the divertor need to withstand high heat flux of 10 MW m−2 for steady-state operation. In this study, we proposed a new strategy, using microchannel cooling technology to remove high heat load on the targets of the divertor. The results demonstrated that the microchannel-based W/Cu flat-type mock-up successfully withstood the thermal fatigue test of 1000 cycles at 10 MW m−2 with cooling water of 26 l min−1, 30 °C (inlet), 0.8 MPa (inlet), 15 s power on and 15 s dwell time; the maximum temperature on the heat-loaded surface (W surface) of the mock-up was 493 °C, which is much lower than the recrystallization temperature of W (1200 °C). Moreover, no occurrence of macrocrack and ‘hot spot’ at the W surface, as well as no detachment of W/Cu tiles were observed during the thermal fatigue testing. These results indicate that microchannel cooling technology is an efficient method for removing the heat load of the divertor at a low flow rate. The present study offers a promising solution to replace the monoblock design for the EAST divertor.
- Subjects :
- Condensed Matter Physics
Subjects
Details
- ISSN :
- 10090630
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- Plasma Science and Technology
- Accession number :
- edsair.doi...........f758f87d75c16e42c817b091a92d3ce3