Back to Search Start Over

Comparative analysis between four model nanoformulations of amphotericin B-chitosan, amphotericin B-dendrimer, betulinic acid-chitosan and betulinic acid-dendrimer for treatment of Leishmania major: real-time PCR assay plus

Authors :
Ali Khamesipour
Nariman Mosaffa
Mehdi Shafiee Ardestani
Amitis Ramezani
Tahereh Zadeh Mehrizi
Hasan Ebrahimi Shahmabadi
Mostafa Haji Molla Hoseini
Source :
International Journal of Nanomedicine. 14:7593-7607
Publication Year :
2019
Publisher :
Informa UK Limited, 2019.

Abstract

Background Amphotericin B (Amp) and Betulinic acid (BA) as antileishmanial agents have negligible water solubility and high toxicity. To solve these problems, for the first time, chitosan nanoparticles and Anionic Linear Globular Dendrimer (D) were synthesized for the treatment of Leishmania major (L. major). Method Chitosan and dendrimer nanoparticles were synthesized, and Amp and BA were loaded into the nanoparticles. The particles were then characterized using various methods and their efficacy was evaluated in vitro and in vivo environments (parasite burden was confirmed using pathological studies and real-time PCR methods). Result The results of docking showed that Amp and BA can be loaded into chitosan and dendrimer nanoparticles. The results of physically drug loading efficiency for AK (Amphotericin B-chitosan), BK (Betulinic acid-chitosan), AD (Amphotericin B-Dendrimer) and BD (Betulinic acid- Dendrimer) were 90, 93, 84 and 96 percent, respectively. The characterization results indicated that the drugs were loaded into nanoparticles physically. Moreover, the increased solubility rate for AD=478, BD=790, AK=80 and BK=300 folds. Furthermore, the results of the drug delivery system showed the slow controlled drug release pattern with cellular uptake of more than 90%. The treatment results showed a 100 percent decrease of toxicity for the all nanodrugs was observed in vivo and in vitro environments. Moreover, AK10 and BK20 mg/kg reduced parasite burden by 83 percent (P

Details

ISSN :
11782013
Volume :
14
Database :
OpenAIRE
Journal :
International Journal of Nanomedicine
Accession number :
edsair.doi...........f73f2b0be317b09290a43706d5955f67