Back to Search
Start Over
An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis
- Source :
- Frontiers of Mechanical Engineering. 15:279-293
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- In structural design optimization involving transient responses, time integration scheme plays a crucial role in sensitivity analysis because it affects the accuracy and stability of transient analysis. In this work, the influence of time integration scheme is studied numerically for the adjoint shape sensitivity analysis of two benchmark transient heat conduction problems within the framework of isogeometric analysis. It is found that (i) the explicit approach (β = 0) and semi-implicit approach with β < 0.5 impose a strict stability condition of the transient analysis; (ii) the implicit approach (β = 1) and semi-implicit approach with β > 0.5 are generally preferred for their unconditional stability; and (iii) Crank-Nicolson type approach (β= 0.5) may induce a large error for large time-step sizes due to the oscillatory solutions. The numerical results also show that the time-step size does not have to be chosen to satisfy the critical conditions for all of the eigen-frequencies. It is recommended to use β ≈ 0.75 for unconditional stability, such that the oscillation condition is much less critical than the Crank-Nicolson scheme, and the accuracy is higher than a fully implicit approach.
- Subjects :
- Work (thermodynamics)
Oscillation
Mechanical Engineering
02 engineering and technology
Isogeometric analysis
Thermal conduction
01 natural sciences
Stability (probability)
010101 applied mathematics
020303 mechanical engineering & transports
0203 mechanical engineering
Benchmark (computing)
Applied mathematics
Transient (oscillation)
Sensitivity (control systems)
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 20950241 and 20950233
- Volume :
- 15
- Database :
- OpenAIRE
- Journal :
- Frontiers of Mechanical Engineering
- Accession number :
- edsair.doi...........f6f9c5e9c2e59e0b49557dacd44f7fe0
- Full Text :
- https://doi.org/10.1007/s11465-019-0575-5