Back to Search Start Over

H∞ estimation for stochastic semi-Markovian switching CVNNs with missing measurements and mode-dependent delays

Authors :
Jinling Liang
Qiang Li
Hong Qu
Source :
Neural Networks. 141:281-293
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

This article is devoted to the H ∞ estimation problem for stochastic semi-Markovian switching complex-valued neural networks subject to incomplete measurement outputs, where the time-varying delay also depends on another semi-Markov process. A sequence of random variables with known statistical property is introduced to depict the missing measurement phenomenon. Based on the generalized It o ˆ ’s formula in complex form concerning with the semi-Markovian systems, complex-valued reciprocal convex inequality as well as intensive stochastic analysis method, some mode-dependent sufficient conditions are presented guaranteeing the estimation error system to be exponentially mean-square stable with a prespecified H ∞ disturbance attenuation level. In addition, the mode-dependent estimator gain matrices are appropriately designed according to the feasible solutions of certain complex matrix inequalities. In the end, one numerical example is provided to illustrate effectiveness of the theoretical results.

Details

ISSN :
08936080
Volume :
141
Database :
OpenAIRE
Journal :
Neural Networks
Accession number :
edsair.doi...........f6a2104df80030e5a83ac580a1844c99
Full Text :
https://doi.org/10.1016/j.neunet.2021.04.022