Back to Search
Start Over
Remark on the Compensation of Singularities in Krein’s Formula
- Source :
- Methods of Spectral Analysis in Mathematical Physics ISBN: 9783764387549
- Publication Year :
- 2008
- Publisher :
- Birkhäuser Basel, 2008.
-
Abstract
- We reduce the spectral problem for an additively perturbed self-adjoint operator H V =H 0−V, to the dual problem of finding zeros of the operator function $$ Sign V - |V|^{1/2} [H_0 - \lambda ]^{ - 1} |V|^{1/2} , $$ and develop the Schmidt perturbation procedure for the resolvent of H v . Based on Rouche theorem for operator-valued analytic functions, we observe, in the Krein’s formula for the perturbed resolvent [H v -λI]-1, the compensation of singularities inherited from H 0, and suggest a convenient algorithm for approximate calculation of the groups of eigenfunctions and eigenvalues of the perturbed operator.
Details
- ISBN :
- 978-3-7643-8754-9
- ISBNs :
- 9783764387549
- Database :
- OpenAIRE
- Journal :
- Methods of Spectral Analysis in Mathematical Physics ISBN: 9783764387549
- Accession number :
- edsair.doi...........f66227c78ecacada462f84eac9b06672
- Full Text :
- https://doi.org/10.1007/978-3-7643-8755-6_16