Back to Search Start Over

Remark on the Compensation of Singularities in Krein’s Formula

Authors :
A. B. Mikhailova
B. S. Pavlov
Source :
Methods of Spectral Analysis in Mathematical Physics ISBN: 9783764387549
Publication Year :
2008
Publisher :
Birkhäuser Basel, 2008.

Abstract

We reduce the spectral problem for an additively perturbed self-adjoint operator H V =H 0−V, to the dual problem of finding zeros of the operator function $$ Sign V - |V|^{1/2} [H_0 - \lambda ]^{ - 1} |V|^{1/2} , $$ and develop the Schmidt perturbation procedure for the resolvent of H v . Based on Rouche theorem for operator-valued analytic functions, we observe, in the Krein’s formula for the perturbed resolvent [H v -λI]-1, the compensation of singularities inherited from H 0, and suggest a convenient algorithm for approximate calculation of the groups of eigenfunctions and eigenvalues of the perturbed operator.

Details

ISBN :
978-3-7643-8754-9
ISBNs :
9783764387549
Database :
OpenAIRE
Journal :
Methods of Spectral Analysis in Mathematical Physics ISBN: 9783764387549
Accession number :
edsair.doi...........f66227c78ecacada462f84eac9b06672
Full Text :
https://doi.org/10.1007/978-3-7643-8755-6_16