Back to Search
Start Over
Investigation on Heat Transfer Performance and Flow Resistance Characteristics in Finned-Tube Heat Exchangers With Different Vortex Generator Positions
- Source :
- Journal of Heat Transfer. 141
- Publication Year :
- 2019
- Publisher :
- ASME International, 2019.
-
Abstract
- The numerical simulation was carried out to investigate mechanism of the heat transfer enhancement in the fin-and-tube heat exchangers. As known, the vortex generators (VGs) were widely used to improve the thermal performance with bad flow resistance characteristics and led to bad comprehensive performance. This paper aims to expound the mechanism of thermal hydraulic characteristics and explore the effect of VGs position on the comprehensive performance. Three types of fins (type 1, type 2, and type 3) were discussed in this paper. The j factor, f factor, and performance evaluation (PEC) of three types of VGs in different positions were discussed and compared. Based on the numerical results, a detailed description of the effect of three types of VGs on the heat transfer performance and flow resistance characteristics was presented at different Reynolds number in the range between 1300 and 2000. In addition, local velocity distribution, local temperature distribution, and local pressure drop distribution were analyzed and discussed. And the effect of VG angle on the thermal performance and flow resistance was presented. It can be concluded that the main heat transfer occurred in the region before the tube, and the wake region behind the tube was harmful to improve the thermal performance and reduce the flow resistance. Besides, VG in the wake region was obviously beneficial to the enhancement of the thermal performance with less energy loss.
- Subjects :
- Pressure drop
Materials science
Turbulence
020209 energy
Mechanical Engineering
Reynolds number
02 engineering and technology
Mechanics
010501 environmental sciences
Vortex generator
Condensed Matter Physics
01 natural sciences
Vortex
symbols.namesake
Mechanics of Materials
Heat transfer
Heat exchanger
0202 electrical engineering, electronic engineering, information engineering
symbols
General Materials Science
Tube (fluid conveyance)
0105 earth and related environmental sciences
Subjects
Details
- ISSN :
- 15288943 and 00221481
- Volume :
- 141
- Database :
- OpenAIRE
- Journal :
- Journal of Heat Transfer
- Accession number :
- edsair.doi...........f6459024e39d74c9af8651a2c94ef4d4
- Full Text :
- https://doi.org/10.1115/1.4042008