Back to Search Start Over

Investigation on Heat Transfer Performance and Flow Resistance Characteristics in Finned-Tube Heat Exchangers With Different Vortex Generator Positions

Authors :
Huang Weilong
Qian Zuoqin
Cheng Junlin
Ren Jie
Wang Qiang
Source :
Journal of Heat Transfer. 141
Publication Year :
2019
Publisher :
ASME International, 2019.

Abstract

The numerical simulation was carried out to investigate mechanism of the heat transfer enhancement in the fin-and-tube heat exchangers. As known, the vortex generators (VGs) were widely used to improve the thermal performance with bad flow resistance characteristics and led to bad comprehensive performance. This paper aims to expound the mechanism of thermal hydraulic characteristics and explore the effect of VGs position on the comprehensive performance. Three types of fins (type 1, type 2, and type 3) were discussed in this paper. The j factor, f factor, and performance evaluation (PEC) of three types of VGs in different positions were discussed and compared. Based on the numerical results, a detailed description of the effect of three types of VGs on the heat transfer performance and flow resistance characteristics was presented at different Reynolds number in the range between 1300 and 2000. In addition, local velocity distribution, local temperature distribution, and local pressure drop distribution were analyzed and discussed. And the effect of VG angle on the thermal performance and flow resistance was presented. It can be concluded that the main heat transfer occurred in the region before the tube, and the wake region behind the tube was harmful to improve the thermal performance and reduce the flow resistance. Besides, VG in the wake region was obviously beneficial to the enhancement of the thermal performance with less energy loss.

Details

ISSN :
15288943 and 00221481
Volume :
141
Database :
OpenAIRE
Journal :
Journal of Heat Transfer
Accession number :
edsair.doi...........f6459024e39d74c9af8651a2c94ef4d4
Full Text :
https://doi.org/10.1115/1.4042008