Back to Search Start Over

Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations

Authors :
Daniel Jaque
F. Jaque
Eugenio Cantelar
Airan Rodenas
Luis Roso
Gustavo Adrián Torchia
Ginés Lifante
J. Lamela
Source :
Applied Physics B. 95:85-96
Publication Year :
2009
Publisher :
Springer Science and Business Media LLC, 2009.

Abstract

The effect that femtosecond laser filamentation has on the refractive index of Nd:YAG ceramics, and which leads to the formation of waveguide lasers, has been studied by micro-spectroscopy imaging, beam propagation experiments and calculations. From the analysis of the Nd3+ luminescence and Raman images, two main types of laser induced modifications have been found to contribute to the refractive-index change: (i) a lattice defect contribution localized along the self-focusing volume of the laser pulses, in which lattice damage causes a refractive-index decrease, and (ii) a lattice strain-field contribution around and inside the filaments, in which the pressure-driven variation of the inter-atomic distances causes refractive-index variations. Scanning near-field optical-transmission and end-coupling experiments, in combination with beam propagation calculations, have been used to quantitatively determine the corresponding contribution of each effect to the refractive-index field of double-filament waveguides. Results indicate that the strain-field induced refractive-index increment is the main mechanism leading to waveguiding, whereas the damage-induced refractive-index reduction at filaments leads to a stronger mode confinement.

Details

ISSN :
14320649 and 09462171
Volume :
95
Database :
OpenAIRE
Journal :
Applied Physics B
Accession number :
edsair.doi...........f5ed18d184dc2a09a5d3e2feb707ac40