Back to Search Start Over

A Novel Regional Fusion Network for 3D Object Detection based on RGB Images and Point Clouds

Authors :
Hung-Hao Chen
Pei-Yung Hsiao
Chia-Hung Wang
Hsueh-Wei Chen
Li-Chen Fu
Yi-Feng Su
Source :
Machine Learning Techniques and Data Science.
Publication Year :
2021
Publisher :
Academy and Industry Research Collaboration Center (AIRCC), 2021.

Abstract

The current fusion-based methods transform LiDAR data into bird’s eye view (BEV) representations or 3D voxel, leading to information loss and heavy computation cost of 3D convolution. In contrast, we directly consume raw point clouds and perform fusion between two modalities. We employ the concept of region proposal network to generate proposals from two streams, respectively. In order to make two sensors compensate the weakness of each other, we utilize the calibration parameters to project proposals from one stream onto the other. With the proposed multi-scale feature aggregation module, we are able to combine the extracted regionof-interest-level (RoI-level) features of RGB stream from different receptive fields, resulting in fertilizing feature richness. Experiments on KITTI dataset show that our proposed network outperforms other fusion-based methods with meaningful improvements as compared to 3D object detection methods under challenging setting.

Details

Database :
OpenAIRE
Journal :
Machine Learning Techniques and Data Science
Accession number :
edsair.doi...........f5bc50085375b3b2346c3abf364549f4