Back to Search
Start Over
Effect of supercharger system on power enhancement of hydrogen-fueled spark-ignition engine under low-load condition
- Source :
- International Journal of Hydrogen Energy. 46:6928-6936
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Hydrogen energy has received much attention in recent years due to its reliability and non-carbon products. However, it has been found that the backfire phenomenon plays a major part in limiting power and torque in the hydrogen internal combustion engine (H2ICE). Much research in recent years has considered turbocharger as a useful method to improve the power of H2ICE. Although the result of boosting a system with turbocharger became enhanced when compared to the natural aspiration system. Unfortunately, there were unsolved problems in exhaust backpressure and pumping losses that hindering the practical utilisation of H2ICE. This paper investigated the experiment of 2.4 L supercharged port fuel injection engine at 2000 rpm. Air excess ratio (lambda) was varied from stoichiometric to 2.8 by adjusting the boosting amount in supercharger, and throttling of the air. The hydrogen injection amount were maintained the same with turbocharger condition; spark advance timing was set at maximum brake torque. It was observed that by boosting engine with supercharger, the lower pumping loss and higher indicated mean pressure had been obtained when compared to turbocharger boosted engine under low-load condition. However, some additional power required for supercharging that lowers output of the engine.
- Subjects :
- Materials science
Renewable Energy, Sustainability and the Environment
Energy Engineering and Power Technology
02 engineering and technology
Bandwidth throttling
010402 general chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
01 natural sciences
Automotive engineering
Supercharger
0104 chemical sciences
Power (physics)
Fuel Technology
Spark-ignition engine
Hydrogen fuel
Hydrogen internal combustion engine vehicle
Hydrogen fuel enhancement
0210 nano-technology
Turbocharger
Subjects
Details
- ISSN :
- 03603199
- Volume :
- 46
- Database :
- OpenAIRE
- Journal :
- International Journal of Hydrogen Energy
- Accession number :
- edsair.doi...........f597d792070f650172705a5f3aeec1b7
- Full Text :
- https://doi.org/10.1016/j.ijhydene.2020.11.144