Back to Search
Start Over
MEDB-52. Organoids as preclinical models to improve and personalize disease outcome for sonic hedgehog medulloblastoma
- Source :
- Neuro-Oncology. 24:i118-i118
- Publication Year :
- 2022
- Publisher :
- Oxford University Press (OUP), 2022.
-
Abstract
- Four main medulloblastoma (MB) molecular subgroups are known, including the sonic hedgehog (SHH) subgroup, which represents ~25% of MB cases. The 5-year overall survival of SHH-MB is ~80%. However, survival between patients is highly diverse and dependent on the driver mutation(s) of the tumor. Patients with TP53 mutated tumors (often accompanied with MYCN and/or GLI2 amplifications) don’t respond well to current therapies and have a 10-year overall survival below 20%. Therefore, there is a need for new and more tailored therapies for these patients. In this study we aim to screen patient-derived organoid models of TP53-mutated SHH MB with a library of ~200 different compounds. We have optimized the cultures of two PDX-derived and one patient-derived organoid line in vitro. The lines will be screened in a high-throughput manner and the best hits and combinations will be validated in corresponding in vivo PDX models. To further assess the role of specific mutations in therapy outcome of TP53-mutated SHH MB, cerebellar organoids generated from human iPSCs were genetically modified with overexpression of dominant-negative P53 (DNP53) alone or in combination with MYCN and/or GLI2. Introduction of DNP53 and MYCN overexpression in cerebellar organoids at day 28/35 leads to the outgrowth of a Ki67-positive proliferating mass after three weeks, indicating tumor growth. Further analyses are ongoing to see how they match SHH-MB patient tumors. These genetically engineered organoid models may elucidate the role of specific mutations in therapy response and/or resistance. In addition, as tumors in these genetically engineered cerebellar organoids arise in a microenvironment of normal cerebellar cell types, initial safety of drugs on cerebellar cells can be assessed. In conclusion, different organoid models of TP53-mutated SHH MB will enable us to find more effective treatments and to better understand how to treat patients with different mutation combinations.
- Subjects :
- Cancer Research
Oncology
Neurology (clinical)
Subjects
Details
- ISSN :
- 15235866 and 15228517
- Volume :
- 24
- Database :
- OpenAIRE
- Journal :
- Neuro-Oncology
- Accession number :
- edsair.doi...........f523bc96a7a27bb2da2dbec0b850a288