Back to Search Start Over

Isolation and quantitative analysis of road dust nanoparticles

Authors :
Alexandr I. Ivaneev
V. V. Eskina
Mikhail S. Ermolin
Vasilii K. Karandashev
Petr S. Fedotov
Natalia N. Fedyunina
Source :
Journal of Analytical Chemistry. 72:520-532
Publication Year :
2017
Publisher :
Pleiades Publishing Ltd, 2017.

Abstract

Nanoparticles are capable of preconcentrating various elements, including toxic ones; they have high mobility in the environment and can easily penetrate into a human body. The study of the chemical composition and properties of road dust nanoparticles is an urgent task of analytical chemistry, which needs to be addressed in the monitoring of the anthropogenic load on the environment and the assessment of the potential danger of pollution to human health. In the present paper, we propose a new approach for the isolation, characterization, and quantitative elemental analysis of road dust nanoparticles. Conditions are selected for the separation of nanoparticles from Moscow dust samples by field-flow fractionation in a rotating coiled column; the resulting fractions are characterized by independent methods (using static light scattering and electron microscopy); the method for calculating the concentration of elements in the nanoparticle fraction according to inductively coupled plasma atomic emission spectrometry and mass spectrometry is improved; elements in a water-soluble form are isolated and determined; and the role of soluble organic matter in the binding of trace elements is discussed. It is shown that the total concentration of most elements in the samples of Moscow dust is comparable to the average values for urban soils. Abnormally high concentrations of several elements (Cu, Zn, Ag, Cd, Sn, Sb, Hg, Pb, Tl, and Bi) are revealed in the fraction of nanoparticles; the enrichment factor with respect to the total concentration ranges from 10 to 450. The source of contamination of road dust nanoparticles with copper, zinc, antimony, and cadmium is highly probable wearing-off of brake pads and car tires. The developed procedure of separation, characterization, and analysis of nanoparticles can be used for other polydisperse environmental samples (for example, volcanic ash).

Details

ISSN :
16083199 and 10619348
Volume :
72
Database :
OpenAIRE
Journal :
Journal of Analytical Chemistry
Accession number :
edsair.doi...........f4eb716401c117d51b565e938959a16b
Full Text :
https://doi.org/10.1134/s1061934817050057