Back to Search Start Over

Modeling the permeability of heterogeneous oil reservoirs using a robust method

Authors :
Mohammad-Javad Shamsoddini-Moghadam
Amir H. Mohammadi
Abdolhossein Hemmati-Sarapardeh
Arash Kamari
Seyed-Ali Hosseini
Farzaneh Moeini
Source :
Geosciences Journal. 20:259-271
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

Permeability as a fundamental reservoir property plays a key role in reserve estimation, numerical reservoir simulation, reservoir engineering calculations, drilling planning, and mapping reservoir quality. In heterogeneous reservoir, due to complexity, natural heterogeneity, non-uniformity, and non-linearity in parameters, prediction of permeability is not straightforward. To ease this problem, a novel mathematical robust model has been proposed to predict the permeability in heterogeneous carbonate reservoirs. To this end, a fairly new soft computing method, namely least square support vector machine (LSSVM) modeling optimized with coupled simulated annealing (CSA) optimization technique was utilized. Statistical and graphical error analyses have been employed separately to evaluate the accuracy and reliability of the proposed model. Furthermore, this model performance has been compared with a newly developed multilayer perceptron artificial neural network (MLP-ANN) model. The obtained results have shown the more robustness, efficiency and reliability of the proposed CSA-LSSVM model in comparison with the developed MLP-ANN model for the prediction of permeability in heterogeneous carbonate reservoirs. Estimations were found to be within acceptable agreement with the actual field data of permeability, with a root mean square error of approximately 0.42 for CSA-LSSVM model in testing phase, and a R-squared value of 0.98. Additionally, these error parameters for MLP-ANN are 0.68 and 0.89 in testing stage, respectively.

Details

ISSN :
15987477 and 12264806
Volume :
20
Database :
OpenAIRE
Journal :
Geosciences Journal
Accession number :
edsair.doi...........f484836fa44a085cfce52e19825dde31
Full Text :
https://doi.org/10.1007/s12303-015-0033-2