Back to Search Start Over

Experimental Investigation on Debris Bed Quenching With Additional Non-Condensable Gas Injection

Authors :
Markus Petroff
Rudi Kulenovic
Jörg Starflinger
Source :
Journal of Nuclear Engineering and Radiation Science. 8
Publication Year :
2022
Publisher :
ASME International, 2022.

Abstract

Severe accidents of light water reactors with core degradation can lead to the formation of a, so-called, debris bed inside the reactor cavity. In the scenario of depleted residual water, the bed can partially melt and interact with the concrete underneath generating noncondensable gases (NCG) at the bottom of the particle bed, which will flow through the debris bed. The impact of additional gas on the quenching process can in principle be considered in thermal-hydraulic system codes such as ATHLET; however, there is still a need for experimental validation of respective models or verification of corresponding simulation results. Therefore, especially for the model validation of COCOMO-3D, which is implemented in ATHLET, a specific extension to the existing experimental database is required. Experimental results of the quenching behavior of a monodispersed particle bed at top-flooding cooling condition with additional NCG injection, utilizing the new built-up test facility FLOAT (flooding facility with gas injection), are presented.

Details

ISSN :
23328975 and 23328983
Volume :
8
Database :
OpenAIRE
Journal :
Journal of Nuclear Engineering and Radiation Science
Accession number :
edsair.doi...........f43fc6beb038c8a71acb4e848ae23db6
Full Text :
https://doi.org/10.1115/1.4051876