Back to Search Start Over

Maximizing the storage capacity of gas networks: a global MINLP approach

Authors :
Mathias Sirvent
Alex Martin
Lars Schewe
Herbert Egger
Marc E. Pfetsch
Martin Skutella
Martin Groß
Robert Burlacu
Source :
Optimization and Engineering. 20:543-573
Publication Year :
2018
Publisher :
Springer Science and Business Media LLC, 2018.

Abstract

In this paper, we study the transient optimization of gas networks, focusing in particular on maximizing the storage capacity of the network. We include nonlinear gas physics and active elements such as valves and compressors, which due to their switching lead to discrete decisions. The former is described by a model derived from the Euler equations that is given by a coupled system of nonlinear parabolic partial differential equations ( $${\text{PDEs}}$$ ). We tackle the resulting mathematical optimization problem by a first-discretize-then-optimize approach. To this end, we introduce a new discretization of the underlying system of parabolic $${\text{PDEs}}$$ and prove well-posedness for the resulting nonlinear discretized system. Endowed with this discretization, we model the problem of maximizing the storage capacity as a non-convex mixed-integer nonlinear problem ( $${\text{MINLP}}$$ ). For the numerical solution of the $${\text{MINLP}}$$ , we algorithmically extend a well-known relaxation approach that has already been used very successfully in the field of stationary gas network optimization. This method allows us to solve the problem to global optimality by iteratively solving a series of mixed-integer problems. Finally, we present two case studies that illustrate the applicability of our approach.

Details

ISSN :
15732924 and 13894420
Volume :
20
Database :
OpenAIRE
Journal :
Optimization and Engineering
Accession number :
edsair.doi...........f07d347e7ee1cbb88f276c8c76576a6e
Full Text :
https://doi.org/10.1007/s11081-018-9414-5