Back to Search
Start Over
Rigidity of complete noncompact Riemannian manifolds with harmonic curvature
- Source :
- Journal of Geometry and Physics. 124:233-240
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- For complete noncompact Riemannian manifolds ( M n , g ) with harmonic curvature, we prove that g is Einstein under an inequality involving L n 2 -norm of the Weyl curvature, the traceless Ricci curvature and the Sobolev constant. Furthermore, we achieve that M n is a constant curvature space under such inequality and finite L 2 -norm of the Weyl curvature.
- Subjects :
- Riemann curvature tensor
Curvature of Riemannian manifolds
Prescribed scalar curvature problem
010102 general mathematics
Mathematical analysis
General Physics and Astronomy
01 natural sciences
Constant curvature
symbols.namesake
Ricci-flat manifold
0103 physical sciences
symbols
Mathematics::Differential Geometry
010307 mathematical physics
Geometry and Topology
Sectional curvature
0101 mathematics
Mathematical Physics
Ricci curvature
Mathematics
Scalar curvature
Mathematical physics
Subjects
Details
- ISSN :
- 03930440
- Volume :
- 124
- Database :
- OpenAIRE
- Journal :
- Journal of Geometry and Physics
- Accession number :
- edsair.doi...........efd8be63516de366cba107fbcd1150f1
- Full Text :
- https://doi.org/10.1016/j.geomphys.2017.11.004