Back to Search Start Over

Optofluidics: a novel generation of reconfigurable and adaptive compact architectures

Authors :
Christian Grillet
Tanveer Mahmud
Benjamin J. Eggleton
Christelle Monat
Simon Mutzenich
Gary Rosengarten
Peter Domachuk
Mark Cronin-Golomb
Arnan Mitchell
Matthew J. Collins
Source :
Microfluidics and Nanofluidics. 4:81-95
Publication Year :
2007
Publisher :
Springer Science and Business Media LLC, 2007.

Abstract

The integration of microfluidics and microphotonics brings the ability to tune and reconfigure ultra-compact optical devices. This flexibility is essentially provided by three characteristics of fluids that are scalable at the micron-scale: fluid mobility, large ranges of index modulation, and abrupt interfaces that can be easily reshaped. Several examples of optofluidic devices are presented here to illustrate the achievement of flexible devices on (semi) planar and compact platforms. First, we report an integrated geometry for a compact and tunable interferometer that exploits a sharp and mobile air/water interface. We then describe a class of optically controlled devices that rely on the actuation of optically trapped micron-sized objects within a fluid environment. The last architecture results from the infiltration of photonic crystal devices with fluids. This produces tunable and reconfigurable photonic devices, like optical switches. Higher degrees of functionality could be achieved with sophisticated optofluidic platforms that associate complex microfluidic delivery and mixing schemes with microphotonic devices. Moreover, optofluidics offers new opportunities for realizing highly responsive and compact sensors.

Details

ISSN :
16134990 and 16134982
Volume :
4
Database :
OpenAIRE
Journal :
Microfluidics and Nanofluidics
Accession number :
edsair.doi...........ee2d9e9f83c97c5b089974544df61ac0