Back to Search
Start Over
Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites
- Source :
- Journal of Materials Science: Materials in Electronics. 31:20210-20222
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- Nanoferrites of Ni0.1Cu0.2MgxZn(0.7−x)Fe2O4 (x = 0.0, 0.15, 0.25, 0.35, 0.45, 0.55 and 0.70 wt%) system fabricated using flash auto combustion technique. All investigated samples annealed for 2 h at 600 °C. XRD, FTIR and TEM were utilized to evaluate the structural characterization of as-prepared samples. The electrical DC resistivity of the investigated samples is evaluated as a function of frequency and temperature. The initial magnetic permeability (μi) is dependent on the temperature and was measured at constant frequency 1 kHz and 10 kHz of the sinusoidal wave. A single-phase of spinel structure was formed and with increasing Mg content the peak (311) of 100% intensity decreases, which demonstrates the presence of Mg, which slows down the growth of the crystal as X-ray result. The FTIR spectra of the prepared ferrite samples are distinguished by the presence of two strong absorption bands (ν1 = 554 cm−1) and (ν2 = 449 cm−1). The morphological observation is determined by the transmission electron microscopy (TEM) and shows that the particles size ranged between 26 and 39 nm. It can notice shifted Curie temperature (Tc) to a higher temperature by increasing Mg content. Mass attenuation coefficient (μm), mean free path (λ), half value layer (X1/2), tenth value layer (X1/10) and effective atomic numbers (Zeff) for the studied samples, have been simulated using FLUKA (2020.0beta.2), while energy change from 15 × 10–3 to 153+ keV with increasing Mg concentration, both μm and Zeff decrease. The largest value of μm and Zeff when x = 0% while sample x = 0.35% has a minimum value of λ, X1/10 and X1/2.
- Subjects :
- 010302 applied physics
Materials science
Mean free path
Doping
Spinel
Analytical chemistry
engineering.material
Condensed Matter Physics
01 natural sciences
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
Transmission electron microscopy
0103 physical sciences
engineering
Curie temperature
Ferrite (magnet)
Mass attenuation coefficient
Electrical and Electronic Engineering
Half-value layer
Subjects
Details
- ISSN :
- 1573482X and 09574522
- Volume :
- 31
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Science: Materials in Electronics
- Accession number :
- edsair.doi...........ed2d0bdb9d4f6632a468f781f559f435