Back to Search
Start Over
Disentangling superconducting and magnetic orders in NaFe1−xNixAs using muon spin rotation
- Source :
- Physical Review B. 97
- Publication Year :
- 2018
- Publisher :
- American Physical Society (APS), 2018.
-
Abstract
- Muon spin rotation and relaxation studies have been performed on a "111" family of iron-based superconductors NaFe_1-xNi_xAs. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x = 0 and 0.4 %, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for higher x than 0.4 % magnetic order becomes more disordered and is completely suppressed for x = 1.5 %. The magnetic volume fraction continuously decreases with increasing x. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T-x phase diagram for NaFe_1-xNi_xAs . A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting T_C for x = 0.6, 1.0, and 1.3 %, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant non-magnetic state below T_C for x = 1.3 %. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s-wave superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering.
- Subjects :
- Superconductivity
Materials science
Condensed matter physics
Magnetic moment
Magnetism
Relaxation (NMR)
Fermi surface
02 engineering and technology
Muon spin spectroscopy
021001 nanoscience & nanotechnology
01 natural sciences
Condensed Matter::Superconductivity
0103 physical sciences
Antiferromagnetism
010306 general physics
0210 nano-technology
Phase diagram
Subjects
Details
- ISSN :
- 24699969 and 24699950
- Volume :
- 97
- Database :
- OpenAIRE
- Journal :
- Physical Review B
- Accession number :
- edsair.doi...........ece3011321c5a2badd801cc2ccff7916
- Full Text :
- https://doi.org/10.1103/physrevb.97.224508