Back to Search
Start Over
Development and characterization of nanofibrous poly(lactic-co-glycolic acid)/biphasic calcium phosphate composite scaffolds for enhanced osteogenic differentiation
- Source :
- Macromolecular Research. 19:172-179
- Publication Year :
- 2011
- Publisher :
- Springer Science and Business Media LLC, 2011.
-
Abstract
- Poly(lactic-co-glycolic acid)(PLGA)/biphasic calcium phosphate (BCP) composite nanofibers with different BCP to PLGA ratios were fabricated using the electrospinning technique. The scanning electron microscopy (SEM) images showed a similar morphology and fibers in all groups. The incorporated BCP was dispersed homogenously throughout the nanofibers, and the surface roughness was affected by the input amount of BCP. The increase in amount of BCP incorporated was confirmed by several methods. BCP incorporation into the PLGA nanofibers did not affect the initial adhesion of osteoblasts and their adherent morphology. However, the proliferation of the cells cultured on the composite nanofibers for 10 days with larger amounts of BCP was delayed, suggesting that incorporated BCP may facilitate the switch from proliferation to differentiation of the osteoblasts. The incorporation of BCP enhanced the expression of osteogenic genes, as well as induced calcium deposition by the osteoblasts in the extracellular matrix(ECM) after 21 days of culture on the PLGA/BCP composite nanofibers. Overall, these results can provide evidence of the potential of BCP incorporation into the biomaterials for effective bone regeneration.
- Subjects :
- Materials science
Polymers and Plastics
General Chemical Engineering
Organic Chemistry
technology, industry, and agriculture
Osteoblast
Adhesion
Electrospinning
Extracellular matrix
chemistry.chemical_compound
PLGA
medicine.anatomical_structure
chemistry
Chemical engineering
Biochemistry
Nanofiber
Materials Chemistry
medicine
Bone regeneration
Glycolic acid
Subjects
Details
- ISSN :
- 20927673 and 15985032
- Volume :
- 19
- Database :
- OpenAIRE
- Journal :
- Macromolecular Research
- Accession number :
- edsair.doi...........ec2ae694ba77b57c2a3b50fc376fb094
- Full Text :
- https://doi.org/10.1007/s13233-011-0206-4