Back to Search Start Over

Hybrid Binary Butterfly Optimization Algorithm and Simulated Annealing for Feature Selection Problem

Authors :
Raees Ahmad Khan
Fawaz Alsolami
Mohd Faizan
Source :
International Journal of Applied Metaheuristic Computing. 13:1-18
Publication Year :
2022
Publisher :
IGI Global, 2022.

Abstract

Feature selection is performed to eliminate irrelevant features to reduce computational overheads. Metaheuristic algorithms have become popular for the task of feature selection due to their effectiveness and flexibility. Hybridization of two or more such metaheuristics has become popular in solving optimization problems. In this paper, we propose a hybrid wrapper feature selection technique based on binary butterfly optimization algorithm (bBOA) and Simulated Annealing (SA). The SA is combined with the bBOA in a pipeline fashion such that the best solution obtained by the bBOA is passed on to the SA for further improvement. The SA solution improves the best solution obtained so far by searching in its neighborhood. Thus the SA tries to enhance the exploitation property of the bBOA. The proposed method is tested on twenty datasets from the UCI repository and the results are compared with five popular algorithms for feature selection. The results confirm the effectiveness of the hybrid approach in improving the classification accuracy and selecting the optimal feature subset.

Details

ISSN :
19478291 and 19478283
Volume :
13
Database :
OpenAIRE
Journal :
International Journal of Applied Metaheuristic Computing
Accession number :
edsair.doi...........eb6948a5452d6dbf2f7fde02983bb88e
Full Text :
https://doi.org/10.4018/ijamc.2022010104