Back to Search Start Over

PROTON GRADIENT REGULATION 3 recognizes multiple targets with limited similarity and mediates translation and RNA stabilization in plastids

Authors :
Lianwei Peng
Kenji Okuda
Toshiharu Shikanai
Wenhe Cai
Source :
The Plant Journal. 67:318-327
Publication Year :
2011
Publisher :
Wiley, 2011.

Abstract

PROTON GRADIENT REGULATION 3 (PGR3) contains 27 pentatricopeptide repeat (PPR) motifs and belongs to the P-subfamily. Previous studies have suggested that PGR3 functions in the stabilization of petL operon RNA and also in the translation of petL and one, or some, of the 11 plastid ndh genes encoding subunits of chloroplast NADH dehydrogenase-like complex (NDH). The pgr3-3 allele has been suggested to be specifically defective in the putative PGR3 function of translation. Herein, we show that the polysome association of the monocistronic petL transcript is impaired in pgr3-3. We detected sequences weakly conserved in the 5' untranslated regions (UTRs) of petL and ndhA, and these putative elements were recognized by recombinant PGR3 in vitro. Previously, pgr3-2 was shown to be specifically defective in stabilizing petL operon RNA and to accumulate NDH at wild-type levels. Consistent with this pgr3-2 phenotype, we show here that a recombinant protein carrying the pgr3-2 mutation in the 12th PPR motif bound to the 5' UTR of ndhA but not of petL. This indicates that a single amino acid alteration changes the binding specificity of PGR3. In contrast, the recombinant protein carrying the pgr3-3 mutation in the final, 27th, incomplete PPR motif can bind to both petL and ndhA 5' UTRs, suggesting that the C-terminal end of PGR3 is not required for binding to targets but is essential for translation of petL and probably also ndhA. Our results fully support the model in which PGR3 recognizes two target sequences and is involved in multiple functions, i.e. stabilizing RNA and activating translation.

Details

ISSN :
09607412
Volume :
67
Database :
OpenAIRE
Journal :
The Plant Journal
Accession number :
edsair.doi...........ea62740aab0ae9a7e440a94de078d358