Back to Search Start Over

Fire-safe and environmentally friendly nanocomposites based on layered double hydroxides and ethylene propylene diene elastomer

Authors :
Debdipta Basu
De-Yi Wang
Amit Das
Jinu Jacob George
Klaus Werner Stöckelhuber
Andreas Leuteritz
Regine Boldt
Gert Heinrich
Source :
RSC Advances. 6:26425-26436
Publication Year :
2016
Publisher :
Royal Society of Chemistry (RSC), 2016.

Abstract

In this work we describe layered double hydroxide (LDH), known as naturally occurring hydrotalcite, based rubber composites that can serve as outstanding fire retardant elastomeric materials. The preparation and detailed characterization of these composites are presented in this study. The inherent slow sulfur cure nature of EPDM rubber is considerably improved by the addition of LDH as realised by the observation of a shortening of the vulcanization time and an improvement of ultimate rheometric torque. This behavior of LDH signifies not only the filler-like character of itself, but also offers vulcanization active surface properties of layered double hydroxide particles. A good rubber–filler interaction was also realised by observing a positive shift of the glass transition temperature of ethylene propylene diene rubber (EPDM) in dynamic mechanical analysis (DMA). The flame retardant property was studied by the cone calorimeter test. The cone calorimeter investigation with sulfur cured gum rubber compounds found a peak heat release rate (PHRR) value of 654 kW m−2. However, at a higher phr loading of Zn–Al LDH i.e., at 40 phr and 100 phr, the PHRR is diminished to 311 kW m−2 and 161 kW m−2, respectively. Thus, this present work can pave the way to fabricate environmentally friendly fire retardant elastomeric composites for various applications.

Details

ISSN :
20462069
Volume :
6
Database :
OpenAIRE
Journal :
RSC Advances
Accession number :
edsair.doi...........ea626a9a590773ac81b312c003df1270