Back to Search
Start Over
Prediction of high bond-order metal–metal multiple-bonds in heterobimetallic 3d–4f/5f complexes [TM–M{N(o-[NCH2P(CH3)2]C6H4)3}] (TM = Cr, Mn, Fe; M = U, Np, Pu, and Nd)
- Source :
- Dalton Transactions. 48:12867-12879
- Publication Year :
- 2019
- Publisher :
- Royal Society of Chemistry (RSC), 2019.
-
Abstract
- Despite continuing and burgeoning interest in f-block complexes and their bonding chemistry in recent years, investigations of the electronic structures and oxidation states of heterobimetallic complexes, and their bonding features between transition-metals (TMs) and f-elements remain relatively less explored. Here, we report a quantum chemical computational study on the series of TM-actinide and -neodymium complexes [TMAn(L)] and [TMNd(L)] [An = U, Np, Pu; TM = Cr, Mn, Fe; L = {N(o-[NCH2P(CH3)2]C6H4)3}3-] in order to explore periodic trend, generalities and differences in the electronic structure and metal-metal bonding between f-block and d-block elements. Based on the calculations, we find up to five-fold covalent multiple bonding between actinide and transition metal ions, which is in sharp contrast with a single bond between neodymium and transition metals. From a comparative study, a general trend of strength of the An-TM interaction emerges in accordance with the atomic number of the actinide metal, which relates to the nature, energy level, and spatial arrangement of their frontier orbitals. The trend presents a valuable insight for future experimental endeavour searching for isolable complexes with strong and multiple An-TM bonding interactions, especially for the experimentally challenging transuranic elements that require targeted research due to their radioactive nature.
Details
- ISSN :
- 14779234 and 14779226
- Volume :
- 48
- Database :
- OpenAIRE
- Journal :
- Dalton Transactions
- Accession number :
- edsair.doi...........ea387cfcba2ee32f724e15c8635ed6e2
- Full Text :
- https://doi.org/10.1039/c9dt03086g