Back to Search Start Over

TEMPO-Oxidized Sacchachitin Nanofibers (TOSCNFs) Combined with Platelet-Rich Plasma (PRP) for Management of Dry Eye Syndrome

Authors :
Hsiu O. Ho
Ming Thau Sheu
Fang-Ching Chao
Der-Zen Liu
Ling-Chun Chen
Meng Huang Wu
Hong-Liang Lin
Ting-Huan Wu
Source :
International Journal of Nanomedicine. 15:1721-1730
Publication Year :
2020
Publisher :
Informa UK Limited, 2020.

Abstract

Introduction In this study, the combination of TEMPO-oxidized sacchachitin nanofibers (TOSCNFs) with chitosan-activated platelet-rich plasma (cPRP) was evaluated for remedying dry eye syndrome (DES). Methods TOSCNFs, designated T050SC, were generated. T050SC combined with chitosan-activated (cPRP) was formulated as eye drops for application for severe DES. To evaluate the effects of cPRP and TOSCNFs on the repair of corneal injury, in vitro studies were conducted using Statens Seruminstitut rabbit corneal (SIRC) epithelial cells for cell proliferation and cell migration assays, and a severe DES animal model using rabbits was established with benzalkonium chloride (BAC) treatment for the evaluation. Results Results showed that the optimal eye formulation contained PRP activated by 350 μg/mL of the low-molecular-weight chitosan group (L3) combined with 300 μg/mL TO50SC (L3+T050SC). In the WST-1 cell-proliferation assay, L3 and L3+TO50SC significantly increased Statens SIRC cell proliferation after 24 hrs of incubation. In the SIRC cell migration assay, the L3+TO50SC group showed a wound-healing efficiency of 89% after 24-hr treatment. After 5 days of treatment, Schirmer's test results did not simulate the dry eye animal model. Typical cornea appearance and eye fluorescein staining results showed that the L3 group had the best effect on improving cornea haze and epithelial damage. Conclusion This study has determined that TOSCNFs effectively promoted the healing effect on severe cases of corneal damage, and also might enhance the clinical application and medical potential of PRP in ophthalmology.

Details

ISSN :
11782013
Volume :
15
Database :
OpenAIRE
Journal :
International Journal of Nanomedicine
Accession number :
edsair.doi...........e8fe139ceba6287d9f941cc077768e31
Full Text :
https://doi.org/10.2147/ijn.s239274