Back to Search
Start Over
[Untitled]
- Source :
- Solar Physics. 171:419-445
- Publication Year :
- 1997
- Publisher :
- Springer Science and Business Media LLC, 1997.
-
Abstract
- The HIgh-REsolution Gamma-ray and hard X-ray Spectrometer (HIREGS) consists of an actively shielded array of twelve liquid-nitrogen-cooled germanium detectors designed to provide unprecedented spectral resolution and narrow-line sensitivity for solar gamma-ray line observations. Two long-duration, circumpolar balloon flights of HIREGS in Antarctica (10–24 January, 1992 and 31 December, 1992–10 January, 1993) provided 90.9 and 20.4 hours of solar observations, respectively. During the observations, eleven soft X-ray bursts at C levels and above (largest M1.7) occurred, and three small solar hard X-ray bursts were detected by the Compton Gamma-Ray Observatory. HIREGS detected a significant increase above 30 keV in one. No solar gamma-ray line emission was detected. Limits on the 2.223-MeV line and the hard X-ray emission are used to estimate the relative contribution of protons and electrons to the energy in flares, and to coronal heating. For the 2.223-MeV line, the upper limit fluence is ≲ 0.8 ph cm-2 in the flares, and the upper limit flux is 1.8 × 10-4 ph s-1 cm-2 in the absence of flares. These limits imply that ≲ 6 × 1030 (2σ) protons above 30 MeV were accelerated in the flares, assuming standard photospheric abundances and a thick target model. The total energy contained in the accelerated protons >30 MeV is ≲ 4 × 1026 ergs, but this limit can be more than 1030 ergs if the spectrum extends down to ∽1 MeV. The upper limit on the total energy in accelerated electrons during the observed flares can also exceed 1030 ergs if the spectrum goes down to ∽ 7 keV. Quiet-Sun observations indicate that ≲ 1026erg s-1 are deposited by energetic protons >1 MeV, well below the1027 –1028 erg s-1 required for coronal heating, while
Details
- ISSN :
- 00380938
- Volume :
- 171
- Database :
- OpenAIRE
- Journal :
- Solar Physics
- Accession number :
- edsair.doi...........e8141b118270521c2dc0d3fdb0275d87
- Full Text :
- https://doi.org/10.1023/a:1004911511905