Back to Search Start Over

Joining dissimilar metal of Ti and CoCrMo using directed energy deposition

Authors :
Jaewook Han
Sung-Jin Chang
Pyuck-Pa Choi
Blazej Grabowski
Won-Seok Ko
Vioni Dwi Sartika
Wonseok Choi
Gwanghyo Choi
Source :
Journal of Materials Science & Technology. 111:99-110
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

We report laser cladding of pure titanium on a CoCrMo alloy using directed energy deposition. Using electron microscopy, the microstructural evolution upon varying the process parameters, especially laser power and powder feed rate, was investigated in relation with crack formation. Cladding layers showing dilution rates of more than 5% contained cracks due to the formation of the brittle Co2Ti intermetallic phase. The observed cracks could be ascribed to a mismatch in thermal expansion and a resulting stress of more than 440 MPa acting on the Co2Ti phase, as determined by density functional theory and nanoindentation. Furthermore, an excess laser energy caused chemical inhomogeneity and unmelted Ti powder particles, while a deficient laser energy resulted in lack of fusion. Neither cracks nor partially melted powders were observed for a powder feed rate of 3 g/min and a laser power of 225-300 W, for which the dilution rate was minimized to less than 5%. For such samples the cladding layers comprised pure α-Ti and a uniform CoTi interface with Co2Ti islands.

Details

ISSN :
10050302
Volume :
111
Database :
OpenAIRE
Journal :
Journal of Materials Science & Technology
Accession number :
edsair.doi...........e72fd963231532fb133996a76888b273