Back to Search
Start Over
Self-assembled hierarchical nanostructures of Bi2WO6 for hydrogen production and dye degradation under solar light
- Source :
- CrystEngComm. 17:107-115
- Publication Year :
- 2015
- Publisher :
- Royal Society of Chemistry (RSC), 2015.
-
Abstract
- Three dimensional (3D) hierarchical nanostructures of orthorhombic Bi2WO6 with unique morphologies were successfully synthesized by a solvothermal method. The precursor concentration plays a key role in the architecture of the hierarchical nanostructures. A peony flower-like morphology was obtained at higher precursor concentrations, and a red blood cell (RBC)-like morphology with average diameter of 1.5 μm was obtained at lower concentrations. These hierarchical nanostructures were assembled by self-alignment of 20 nm nanoplates. As their band gap is in the visible region, the photocatalytic activity of the Bi2WO6 hierarchical nanostructures for the production of hydrogen from glycerol, and the degradation of rhodamine B (RhB) and methylene blue (MB) under ambient conditions in the presence of solar light was investigated. The Bi2WO6 with peony flower morphology was observed to be the most efficient photocatalyst (H2: 7.40 mmol h−1 g−1, kRhB: 0.240 and kMB: 0.100) of the reported nanostructures. The higher activity of the peony flowers was due to their porous nature, high surface area and lower band gap. Such unique 3D nanostructures of Bi2WO6 have been fabricated for the first time, and their use as photocatalysts in the production of hydrogen from glycerol has hitherto not been attempted. These nanostructures may have potential in ferroelectric, piezoelectric, pyroelectric and nonlinear dielectric applications.
- Subjects :
- Nanostructure
Materials science
Hydrogen
Band gap
chemistry.chemical_element
Nanotechnology
General Chemistry
Dielectric
Condensed Matter Physics
chemistry.chemical_compound
chemistry
Chemical engineering
Rhodamine B
Photocatalysis
General Materials Science
Orthorhombic crystal system
Hydrogen production
Subjects
Details
- ISSN :
- 14668033
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- CrystEngComm
- Accession number :
- edsair.doi...........e6392d8ad9f9478229137923371819c1
- Full Text :
- https://doi.org/10.1039/c4ce01968g