Back to Search
Start Over
A panconnectivity theorem for bipartite graphs
- Source :
- Discrete Mathematics. 341:151-154
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Let G be a simple m × n bipartite graph with m ≥ n . We prove that if the minimum degree of G satisfies δ ( G ) ≥ m ∕ 2 + 1 , then G is bipanconnected: for every pair of vertices x , y , and for every appropriate integer 2 ≤ l ≤ 2 n , there is an x , y -path of length l in G .
- Subjects :
- Discrete mathematics
021103 operations research
Degree (graph theory)
0211 other engineering and technologies
0102 computer and information sciences
02 engineering and technology
01 natural sciences
Complete bipartite graph
Theoretical Computer Science
Combinatorics
Integer
Edge-transitive graph
010201 computation theory & mathematics
Simple (abstract algebra)
Graph power
Path (graph theory)
Bipartite graph
Discrete Mathematics and Combinatorics
Mathematics
Subjects
Details
- ISSN :
- 0012365X
- Volume :
- 341
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics
- Accession number :
- edsair.doi...........e5747f74a4136032b1094840f9074e37