Back to Search
Start Over
Correction to: Dietary intervention using (1,3)/(1,6)-β-glucan, a fungus-derived soluble prebiotic ameliorates high-fat diet-induced metabolic distress and alters beneficially the gut microbiota in mice model
- Source :
- European Journal of Nutrition. 60:2273-2273
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- Western diet, rich in carbohydrates and fat, is said to be a major factor underlying metabolic syndrome. Interventions with prebiotics, the key modulators of the gut microbiota, have paramount impact on host-associated metabolic disorders. Herein, we investigated the effect of fungus-derived (1,3)/(1,6)-β-glucan, a highly soluble dietary fiber, on high-fat diet (HFD)-induced metabolic distress. Male C57BL/6 J mice were fed with different diet groups (n = 11): control diet, HFD, 3 g/kg or 5 g/kg of β-glucan-incorporated HFD. At the end of experimental study period (12th week), body weight, feces weight and fecal moisture content were observed. Further, colonic motility was measured using activated charcoal meal study. Proteins extracted from liver and intestine tissues were subjected to western blot technique. Paraffin-embedded intestinal tissues were sectioned for histochemical [Periodic acid-Schiff (PAS) and Alcian blue (AB) staining] analysis. Fecal microbiota analysis was performed using MOTHUR bioinformatic software. β-glucan consumption exhibited anti-obesity property in mice groups fed with HFD. In addition, β-glucan ameliorated HFD-induced hepatic stress, colonic motility and intestinal atrophy (reduction in colon length, goblet cells, and mucosal layer thickness). Further, β-glucan incorporation shifted bacterial community by increasing butyrate-producing bacteria such as Anaerostipes, Coprobacillus, and Roseburia and decreasing reportedly obesity-associated bacteria such as Parabacteroides and Lactococcus. Altogether, the outcomes of this present pre-clinical animal study show β-glucan to be a promising therapeutic candidate in the treatment of HFD-induced metabolic distress. Further comprehensive research has to be conducted to brace its clinical relevance, reproducibility and efficacy for aiding human health.
- Subjects :
- 0301 basic medicine
medicine.medical_specialty
food.ingredient
medicine.medical_treatment
Medicine (miscellaneous)
030209 endocrinology & metabolism
Gut flora
03 medical and health sciences
0302 clinical medicine
food
Anaerostipes
Western blot
Internal medicine
medicine
Feces
030109 nutrition & dietetics
Nutrition and Dietetics
medicine.diagnostic_test
biology
Prebiotic
medicine.disease
biology.organism_classification
Obesity
Endocrinology
Metabolic syndrome
Roseburia
Subjects
Details
- ISSN :
- 14366215 and 14366207
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- European Journal of Nutrition
- Accession number :
- edsair.doi...........e560890b290872bbb198b4ec08a20094
- Full Text :
- https://doi.org/10.1007/s00394-021-02537-9