Back to Search
Start Over
Variable precision rough set based decision tree classifier
- Source :
- Journal of Intelligent & Fuzzy Systems. 23:61-70
- Publication Year :
- 2012
- Publisher :
- IOS Press, 2012.
-
Abstract
- This paper analyzes the existing decision tree classification algorithms and finds that these algorithms based on variable precision rough set VPRS have better classification accuracy and can tolerate the noise data. But when constructing decision tree based on variable precision rough set, these algorithms have the following shortcomings: the choice of attribute is difficult and the decision tree classification accuracy is not high. Therefore, this paper proposes a new variable precision rough set based decision tree algorithm IVPRSDT. This algorithm uses a new standard of attribute selection which considers comprehensively the classification accuracy and number of attribute values, that is, weighted roughness and complexity. At the same time support and confidence are introduced in the conditions of the corresponding node to stop splitting, and they can improve the algorithm's generalization ability. To reduce the impact of noise data and missing values, IVPRSDT uses the label predicted method based on match. The comparing experiments on twelve different data sets from the UCI Machine Learning Repository show that IVPRSDT can effectively improve the classification accuracy.
- Subjects :
- Statistics and Probability
Incremental decision tree
business.industry
Decision tree learning
Dominance-based rough set approach
General Engineering
ID3 algorithm
Decision tree
Feature selection
Pattern recognition
computer.software_genre
Statistical classification
Artificial Intelligence
Rough set
Data mining
Artificial intelligence
business
computer
Mathematics
Subjects
Details
- ISSN :
- 10641246
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- Journal of Intelligent & Fuzzy Systems
- Accession number :
- edsair.doi...........e410e5b22df570ac342722e5fc4e127c