Back to Search
Start Over
Exponential sums formed with the von Mangoldt function and Fourier coefficients of $${ GL}(m)$$ G L ( m ) automorphic forms
- Source :
- Monatshefte für Mathematik. 184:539-561
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- Let $$\mu (n)$$ be the Mobius function, $$\Lambda (n)$$ be the von Mangoldt function, and $$A_F(n, 1,\ldots ,1)$$ denote the nth coefficient of the Dirichlet series for L(s, F) associated to a Hecke–Maass form F for $$SL(m,\mathbb {Z})$$ . In this paper, as an appendix to our previous work, we firstly proved that for a Maass form for $$SL(3,\mathbb {Z})$$ , uniformly for all real numbers $$\theta $$ , the sequences $$\{\mu (n)\}$$ and $$\{A_F(n,1)e(n\theta )\}$$ are strong asymptotically orthogonal. Then as an analogue of Baker and Harman’s result on exponential sums formed with the Mobius function under the Generalized Riemann Hypothesis, we investigated the best possible estimates for the sum $$\sum _{n\le x}\Lambda (n) A_F(n, 1,\ldots ,1) e(n^k\theta )$$ under certain assumptions.
- Subjects :
- Von Mangoldt function
Mathematics::Number Theory
General Mathematics
010102 general mathematics
Mathematical analysis
Automorphic form
Möbius function
01 natural sciences
Exponential function
Combinatorics
Riemann hypothesis
symbols.namesake
0103 physical sciences
symbols
010307 mathematical physics
0101 mathematics
Fourier series
Dirichlet series
Mathematics
Real number
Subjects
Details
- ISSN :
- 14365081 and 00269255
- Volume :
- 184
- Database :
- OpenAIRE
- Journal :
- Monatshefte für Mathematik
- Accession number :
- edsair.doi...........e3682c916563d4914ba435add55a261c